THIRD NATIONAL STUDENT OLYMPIAD
IN COMPUTER MATHEMATICS
„ACADEMICIAN STEFAN DODUNEKOV“
SOFIA UNIVERSITY ST. KLIMENT OHRIDSKI
7-9. XI. 2014

Problems for group A

1. Calculate the value of \(\left(\frac{2 + \sqrt{3}}{2} + \left(2 - 2\cos \frac{11\pi}{6} \right)^{\frac{1}{2}} \right) \left(\frac{2 + 2\cos \frac{\pi}{6} - \sqrt{2 - \sqrt{3}}}{2} \right)^{-1} \).

2. If \(F(x, y) = \frac{\sin(x-y) + \cos(x+2y)}{x+y+2} \), calculate \(F(2F(x,y), F(y,x)) \) for \(x = 4,5 \) and \(y = 3,8 \).

3. Check if the number \(2760727302517 \) is simple.

4. Factor the polynomial \(1 - x - 7x^2 - 10x^3 - 7x^4 - x^5 + x^6 \) into irreducible polynomials with real coefficients.

5. Simplify the expression \(2(a+b)^{-1}(ab)^{\frac{1}{2}} \left(1 + \frac{1}{4} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} \right)^2 \right)^{\frac{1}{2}} \) if \(a \) and \(b \) are real numbers.

6. The quadratic equation \(x^2 - 4x + 1 = 0 \) has roots \(x_1, x_2 \). Calculate the value of \(\left(\sqrt{x_1} + \sqrt{x_2} \right)^{-14} \).

7. Prove the identity \(\sum_{k=0}^{n} (-1)^k \left(\begin{array}{c} n \\ k \end{array} \right) \frac{1}{2k+1} = \frac{2^n (n!)^2}{(2n+1)!} \) for \(n \in \mathbb{N} \).

8. Find the integers \(n \), for which \(n^2 + 2 \) is a divisor of \(2014n + 2 \).

9. Find the greatest natural number \(n \leq 1000 \) that can be represented in the form \(n = \frac{a^2 + b^2}{ab - 1} \), where \(a \) and \(b \) are natural numbers.

10. Calculate \(f_{2014} \), given the sequence \(\{f_n\}_{n=1}^{\infty} \) where \(f_1 = 2, f_2 = 1, f_{3n} = 3f_n, f_{3n+1} = 3f_n + 2, f_{3n+2} = 3f_n + 1 \).

11. Calculate \(f(A) \) given the function \(f(x) = x^{2014} - x^{1989} \) and the matrix \(A = \begin{pmatrix} -1 & -2 & 2 \\ 4 & 5 & -4 \\ 3 & 3 & -2 \end{pmatrix} \).

12. Find an irreducible fraction that is a solution of the equation:
\[x = \sqrt{2015 - x} \sqrt{2014 - x} + \sqrt{2014 - x} \sqrt{2013 - x} + \sqrt{2013 - x} \sqrt{2015 - x} \].

13. Solve the equation \(\arctg \frac{x}{2} - \frac{1}{2} \arctg \frac{2x}{1-x^2} = \frac{\pi}{2} \).

14. Find a solution of the system
\[
\begin{align*}
24x^3 - 10x^2y - 3xy^2 + y^3 &= 0 \\
x^2 + 5xy &= y^2
\end{align*}
\]such that \(x \) has the greatest value.
15. Find the nearest to 10 root of the equation \(e^{-x^2} - \cos x = 0 \).

16. Find the values of the real parameter \(m \), for which the equation \((1-m)x^3 - 3mx^2 - 3mx + 4 - m = 0\) has three real roots.

17. Find the number of the real solutions of the equation \(5x_{k+1} = x_k^5 + 3, \ k = 1, 2, \ldots, 2013 \). \(5x_1 = x_{2014}^5 + 3 \).

18. Calculate \(\lim_{n \to \infty} \left(n! \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right) \).

19. Calculate the integral \(\int_0^{2014} \frac{\ln x \, dx}{\sqrt{2014 x - x^2}} \).

20. Find the length of the curve \(x^2 + y^2 = 1 \) and the area of the figure, inside that curve.

21. Let the triangle \(ABC \) be a right isosceles triangle with hypotenuse \(AB \) equal to 4. The point \(D \) lies on a circle with centre \(C \) and radius 1. Find the smallest possible perimeter of the triangle \(ABD \).

22. The lines \(CA \) and \(CB \) pass through the point \(C(3,-1) \) and are tangent to the ellipse \(\Gamma: 2x^2 + 3y^2 + x - y - 5 = 0 \) \((A \in \Gamma, \ B \in \Gamma)\). Find the area of the triangle \(ABC \).

23. Draw that part of the sphere \(x^2 + y^2 + z^2 = 1 \) which is inside the cylinder \(x^2 + y^2 = x \).

24. Find the volume of the body, defined by the inequality \((x^2 + y^2 + z^2 + 8)^2 \leq 36(x^2 + y^2) \).

25. Find a natural number \(N \) for which the equations \(x^2 - 2014x + N = 0 \) and \(x^2 - 2014x - N = 0 \) have integer roots.

26. The sequence \(\{p_n\}_{n=1}^{\infty} \) of natural numbers is such that the sequence \(\left\{ \frac{p_n}{n} \right\}_{n=1}^{\infty} \) is strictly decreasing. Find the least possible value of \(p_{681} \) if \(p_{2014} = 10000 \).

27. Find the number of the squares with area smaller that 201400, which vertices have integer coordinates satisfying the equality \(x^4 + x^3 y^3 = x^4 + xy \).

28. Find the 2014-th digit of the number 2014^{2014}.

29. The natural number \(n \) and the positive numbers \(x_1, x_2, \ldots, x_n \) are such that \(\sum_{k=1}^{n} x_k = 2014 \). Find the greatest value of \(\prod_{k=1}^{n} x_k \).

30. Let \(\frac{1}{1-x-14x^2 + x^3} = \sum_{n=0}^{\infty} a_n x^n \). Calculate the limit \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \).

Each problem is worth 2 points.
All numerical calculations must be performed with the expected computing mathematical accuracy for the corresponding computer algebra system.